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The response of sheared turbulence to 
additional distortion 
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Emmanuel College, Cambridge 

(Received 9 March 1979 and in revised form 23 August 1979) 

In  unidirectional flows, the ratios of Reynolds shear stress to total intensity (except 
near positions of zero stress) remain remarkably constant from one flow to another, 
but curvature or strong divergence of the mean flow causes very considerable changes 
in the stress ratios. A scheme for calculating the changes is described, based on the 
rapid-distortion approximation of the equations of motion. The results depend to some 
extent on the effective history of distortion of the turbulence and on the magnitude 
of an eddy viscosity that models the effect of nonlinear transfer of energy to smaller 
eddies of the dissipation sequence, but the correspondence with measured values in a 
distorted wake and in a curved mixing layer is fairly good. In  particular, the curious 
behaviour of stress ratios in the curved mixing-layer can be reproduced qualitatively 
without any difficulty. Small perturbations of wall turbulence provide a simple 
application, and earlier calculations of the energy transfer between wind and water 
waves have been repeated including the changes in the stress ratios predicted by the 
scheme. In  the latter case, very large changes in the distributions of pressure and 
shear stress are found, and the rates of energy transfer are much larger and in better 
agreement with observations. 

1. Introduction 
Over the past decade, predictive theories of turbulent shear flow have been con- 

structed from the equations for the Reynolds stress tensor by making semi-empirical 
assumptions about the distributions of viscous energy dissipation and flux of turbulent 
energy and, in particular, about the relative magnitudes of components of the stress 
tensor. If the distortion by the mean flow is almost unidirectional simple shearing 
and so satisfies the conditions for the ‘boundary layer’ approximation, good agreement 
between prediction and measurement has been obtained for important properties of 
boundary layers such as mean velocities, wall stress and heat transfer. Prediction of 
turbulent intensit,ies is less satisfactory, but the normal Reynolds stresses have little 
influence on these flows and the good agreement with the predictions is ensured by 
using assumptions consistent with the ‘law of the wall’. For free turbulent flows, 
the predictions are more sensitive to details of the basic assumptions but the variation 
of entrainment rates between wakes, jets and mixing-layers is well described by the 
scheme (Townsend 1976). 

If the mean flow is appreciably three-dimensional or strongly divergent, straight- 
forward extensions of the theories may be seriously in error, and several attempts have 
been made to improve the predictive ability by introducing additional parameters 
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to describe the effects of the more complex flow distortions on the turbulent 
motion. One example is the use by Bradshaw (1969) of an analogy between the effects 
of buoyancy in anidirectional flow and the effects of angular momentum transfer in 
flow with curved streamlines. Another approach is that of Launder, Reece & Rodi 
(1975) who use the equations for the Reynolds stresses to calculate the stress ratios, 
essentially by regarding the pressure-velocity terms as acting to remove anisotropy 
induced by the inertial terms. While the equations describe many flows with some 
accuracy, experiments on the distortion of homogeneous turbulence agree with 
theoretical calculations in showing that the functions of the inertial and pressure 
terms cannot be clearly distinguished. Tucker & Reynolds (1968) have measured 
intensity ratios during irrotational plane straining of grid turbulence, and their 
results show that redistribution of energy among the velocity components occurs 
simultaneously with the distortion and that the return to isotropy is rather slow after 
removal of the mean flow distortion. 

While the Reynolds stress equations are exact, they describe only some aspects of 
the turbulent velocity field and can say very little about the flow patterns, in particular 
about the form and orientations of the energy-containing eddies. If the details of the 
motion turn out to be relevant for some unusual forms of flow distortion, a calculation 
scheme that does not include the necessary information will not give correct results. 
One such flow is the curved mixing-layer studied by Castro & Bradshaw (1976). As 
the mixing-layer begins to change direction, the first effect of the curvature is an 
expected decrease in the stress-intensity ratio but, after the flow direction has turned 
through 45", the ratio increases and recovers to nearly its initial value after a change 
of direction by 90'. 

In  many kinds of unidirectional flow, the measured velocity correlations are, 
except for contributions from eddies characteristic of the particular flow, reinarkably 
similar, and the ratios of Reynolds shear stress to total turbulent intensity are also 
much the same. In  addition, the velocity correlations resemble closely those calculated 
from the rapid-distortion equations for initially isotropic turbulence that has under- 
gone total shears between two and three (Townsend 1970). For the purposes of this 
paper, it is not necessary to discuss the reasons for the ability of the rapid-distortion 
calculation to provide an acceptable description of the correlation function in uni- 
directional shear flow. The calculation simply and conveniently provides an adequate 
specification of the motion. If a turbulent flow passes suddenly from a region of uni- 
directional shear to one of more complex distortion, the initial response will be 
described by the rapid-distortion equations and the changes in the stress ratios could be 
calculated. Here, the possibility will be examined, that the rapid-distortion equations 
can be used to calculate stress ratios for finite general distortions of sheared turbulence. 

The rapid-distortion approximation has been used for a long time, particularly to 
calculate the effect of the irrotational distortion on turbulence passing through a 
contraction or around a bluff body (Batchelor & Proudman 1954; Hunt 1973). Then 
the changes depend only on the total distortion by the mean flow. Within a developing 
shear flow, the eddies exist within mean velocity gradients that are strongly rotational 
and the changes are influenced by the history of velocity gradient as well as the total 
distortion and rotation unless the type of gradient does not change. Results for 
continuing simple shearing are given by Moffatt (1965) and by Deissler (1965). 
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After a description of the rapid-distortion calculation procedure, stress ratios cai- 
culated for the curved mixing-layer and for a three-dimensionally distorted wake are 
compared with measured values, and a calculation of the flow over water waves in a 
deep turbulent boundary layer is made. For the latter purpose, the equation for the 
turbulent kinetic energy is used to close the system of equations. In its present form, 
the rapid-distortion scheme is limited to prediction of stress ratios, and some such 
auxiliary equation is needed before it could form part of a complete procedure for 
the calculation of turbulent flows. 

2. The effects of mean flow distortion on the turbulent motion 
Although it is usual to discuss the structure of turbulent shear flows as though the 

eddies were affected only by local velocity gradients and by eddies in their immediate 
neighbourhood, observed velocity patterns always show strong coherence over the 
full width of the flow. Some account of the large extent of the patterns may be taken 
(i) by postulating eddy diffusion (or convection) rates for energy and Reynolds stress, 
and (ii) by regarding each eddy as a local structure that moves in the flow, either 
systematically with the mean flow velocity at  its current position, erratically in the 
velocity fields of neighbouring eddies, or with a velocity induced by its own vorticity. 

On this view, each eddy has been subjected to a total strain that is the rate of strain 
experienced by the eddy integrated over its past history. Since eddies significantly 
smaller than those contributing most to the kinetic energy and Reynolds stress 
experience random turbulent rates of strain as well as strain by the mean flow, their 
total strains are much more variable and in sum they form part of a ‘background’ of 
roughly isotropic turbulence. Only the energy-containing ‘ large ’ eddies are strained 
almost entirely by the mean flow gradients, and it is their history that matters for the 
development of Reynolds stresses. In simple free turbulent flows, eddies originate as 
the fluid composing them is entrained from the ambient flow, but the trajectories of 
eddies at  a particular point in the flow are not all the same and the total strains are 
different. The effective total strain is an average, and the effect may be modelled by 
defining an eddy diffusion coefficient for strain (Townsend 1970). In  wall turbulence, 
the effective duration of continuous straining is limited by the ‘bursting’ pheno- 
menon, which means that eddies comparable in diameter with distance from the 
surface remain in environments of strong shearing for limited periods of time. In  
both kinds of flow, the distortion is very, nearly a simple shearing and the effective 
distortion is finite. In  curved or divergent flows, the distortion is more complex and 
the history of distortion over the life-time of the eddy must be used rather than a 
current effective distortion. 

The rapid-distortion equations to be used refer to homogeneous turbulent flow in a 
uniform gradient of mean velocity, implying that the length scale for the turbulence 
is small compared with the flow width, and they assume that transfer of energy by 
turbulence-turbulence interactions has little effect on the flow patterns of the large, 
energy-containing eddies. The interactions are responsible for the transfer of energy 
to the smaller eddies which contain only a small part of the total turbulent energy 
and which are less anisotropic than the large eddies. Physically, the implication is 
that large eddies are stable flow patterns which do not overlap one another and which 
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change almost entirely as a result of interaction with the mean flow gradient.Evidence 
of the discrete nature and stability of the large eddies is found in the slow approach 
to isotropy and the long persistence of flow patterns in flows without gradients of 
mean velocity (Townsend 1976, chap. 3). 

If the effects of the turbulence-turbulence interactions are nearly limited to transfer 
of energy to the smaller eddies of the turbulence, the transfer will be roughly uniform 
over the extent of a large eddy and a simple way to describe it is by an eddy viscosity 
acting on the large eddies. For any particular sequence of distortion by the mean flow, 
it is found that the calculated stress-ratios change very little while the magnitude of 
the eddy viscosity changes considerably, and it is improbable that a different modelling 
of the transfer would give different results. Obviously, the magnitude of the viscosity 
coefficient has a direct and considerable effect on the calculated intensities, but the 
rapid-distortion scheme is intended to predict changes in flow patterns and would 
need considerable development before intensities could be specified. 

If the velocity field within a finite but large volume is given by the three-dimensional 
Fourier series, 

u,(x, t )  = C ai(k, t )  exp (ik . x), 

the rapid-distortion equations of motion for a uniform gradient of mean velocity, 

'(2.1) 

with 
dk, a q. - = -k.- 

axi dt 

to describe the distortion and rotation of the wavenumber lattice by the mean flow 
(Pearson 1959). The omitted nonlinear terms have been replaced by the 'viscous' 
term, vT k2ai. The equations have an integrating factor, 

V(k, t )  = exp vT k2dt  (2.4) f 
and solutions of equation ( 2 . 2 )  can be obtained by dividing solutions of the equations 
without the viscous term by V(k, t ) .  

To find values of the Reynolds stresses, it is necessary to specify the strain history 
of the turbulent fluid from some virtual origin of time when it was nearly isotropic 
and to assign a value to the eddy viscosity. Consider first the changes of wavenumber 
for a single component. Initial and final values, k' and k, are linearly related by 

where 

with initial values, Ki; = &,j. Similarly, initial and final values of the Fourier CO- 

efficients are linearly related by 
(2.7) a ,  = A , ,  

a a3 j, 

where 

with the initial condition, A i j  = Sij. 
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Values of the Reynolds stresses are found by forming the spectrum function, 

&(k) = N(a,(k) u?(k) +a:(k) uj(k)), 
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where N is a normalizing factor, and then 

&(k) = A ,  AjQPLQ(k’). 
The initial turbuience is assumed to be isotropic, so that 

PL,(k’) = (S,,- k; k;/kf2)  $(k’) 

(2.11) 

Without the eddy transfer term the results are independent of the spectral form, 
but a form must be assumedif the transfer is to be included. Since the energy-containing 
eddies are considered to be fairly homogeneous in size, the error law spectrum defined 
by &k’) = Ck’zexp ( - +k’2L2) 

gives an appropriate representation of the initially isotropic turbulence. In the polar 
co-ordinates, the exponent of the integrating factor may be written as 

3 
4rr 

where som $(k’) k’2dk‘ = - (0). 

7 v T t d  k 2 L 2 Q(0, $1, (2.12) 

where Q(8,$) = j t d  (k2 /k f2)d t / td  
0 

is an average value of ( k2 /E2)  over the duration of the distortion, t,. 

the Reynolds stresses becomes 
Making allowance for transfer of energy from the main eddies, the expression for 

and requires an estimate of the non-dimensional eddy transfer coefficient, vT td /L2 .  
Experience with calculations for flows with unidirectional shearing shows that the 

calculated ratios of the stress components are nearly independent of the value of the 
transfer coefficient, provided that it is not unrealistically small. Its magnitude may 
be estimated by observing that production and dissipation of turbulent energy are 
roughly equal in typical shear flows. Although the large eddies of a shear flow are far 
from isotropic, the initial transfer of energy from eddies with the error-law spectrum 
caused by an eddy transfer coefficient vT is 

and is not expected to change greatly during distortion. 
For simple shearing at  a rate &, energy is transferred from the mean flow at a rate 

7 4  where 7 is the Reynolds shear stress. In  unidirectional shear flows, the ratio of 
shea.r stress to total turbulent intensity is near to 0.15 and so 

E = 15VT(U?)/L2 

2 % 0.03. 
dL2 

(2.14) 
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If the effective total shear is at, = a,, 

vT td/L2 + 0.03 01,. (2.15) 

Both for simple and complex distortions, suitable values of the non-dimensional 
transfer coefficient should be found in the range 0-1-0.2. 

Explicit solutions of the equations for the transformation matrices are easily found 
for simple types of distortion, in particular, for plane shearing, for irrotational dis- 
tortion with the principal axes fixed in space, for irrotational, constant-circulation, 
curved flow, and for solid-body rotati0n.t It would be convenient if the transformation 
matrices for a complex history of distortion were the product of matrices for any 
sequence of simple distortion that together produce the total distortion. Unfortun- 
ately, this commutative property holds only for the wavenumber transformation and 
is not valid for the coefficient transformation if the distortion includes any rotation. 

For any mean flow containing vorticity, the transformation matrix for the CO- 

efficients should be obtained by integration of equation (2.8) with the appropriate 
mean velocity gradients. To simplify the numerical work, the integrations for the 
distorted wake and for the curved mixing-layer have been done by ‘ quadrature ’, that 
is, the distortion history has been split into a number of steps, each of simple type 
and not too large, and chosen so that the total distortion during as well as at  the end 
of each step is reasonably close to the actual flow distortion. The adequacy of the 
results can be tested by reducing the step size. The final Fourier coefficients are then 
calculated from the original ones with a transformation matrix that is the product of 
the matrices for the component steps of the total distortion, e.g. for a distortion with 
transformations A ,  B, C in that order, 

a,(k) = Ci jB jkAkpa j , (k ) .  (2.16) 

Transformations for four simple forms of distortion are given in the appendix. 

3. The distorted wake 
Measurements of turbulent intensities and stresses have been made in the wake of 

a circular cylinder as it passes through a distorting duct. The overall effect of the duct 
is to stretch the wake in the direction of shear, i.e. in the direction normal to the plane 
of the wake, and to compress it in the plane of the wake without significant longitudinal 
extension. However, considerable longitudinal extension and compression occurs 
during the passage through the distorting section (figure 1) .  For the calculation of 
stress ratios, the lateral extension ratios were assumed to be proportional to the local 
dimensions of the duct section, and the longitudinal extension ratios found from the 
distribution of velocity on the centre-line. The cylinder diameter is 3.19mm and the 
flow velocities near 9 m s-l, with cylinder Reynolds numbers near 2000. Intensities 
and Reynolds stresses were measured over traverses at  distances between 41 and 
1 16 cm from the cylinder, beginning upstream of the distorting section and ending 
downstream of it. Details of the experimental arrangements are given by Elliott (1976) 
and a fuller account is being prepared for publication. 

considerable changes in the turbulent motion. 
t For convenience, solid-body rotation is included in the term ‘distortion’ since it induces 
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FIGURE 1. The distorted wake flow. (a) Longitudinal sections of the distorting duct: (i) vertical; 
(ii) horizontal. (b )  Distribution of mean velocity along the centre-line of the duct. 
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FIGURE 2. Measured and calculated ratios of Reynolds shear stress to total intensity at the 
positions of maximum slicar stress in the distorted wake flow. 0, measured values; , calculated 
va111es. 
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FIGURE 3. Measured and calculated ratios of component intensities to total intensity at positions 
of maximum shear stress i n  the distorted wake flow. , 0, u Z / q 2 ;  A, A, v2 /q2;  ., 0, G/p tile 
open symbols denot>c measurcd v d ~ e s .  

- _  - -  
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(a)  Irrotational strain ratios 

x (cm) Ox strain Oy strain Oz strain 

35 
41 
52 
65 
77 
90 

102 
109 
118 

1 
1.022 
1.044 
0.896 
0.884 
1.119 
1.094 
0.984 
0.983 

1 
0.978 
0.958 
0.757 
0.767 
0.670 
0.685 
1 
1 

1 
1 
1 
1.475 
1.475 
1.334 
1.334 
1.016 
1.017 

(b )  Shear steps 
x (cm) Sequence A Sequence 3 

35 
41 
52 
65 
77 
90 

102 
109 
118 

1.5-0.5 
1’5-0’4-0’3 
1.5-0.3-0.2-0.2 
1.5-0’2-0.2-0.2-0.1 
1.5-0.2-0.2-0.2-0.1-0.1 
1*5-0.2-0.2-0* 1-0.1-0.1-0.1 
1.5-0.3-0.2-0.1-0.1-0.1-0.1-0.1 
1.5-0.2-0-2-0.2-0.1-0.1-0.1-0.1-0-1 
1~5-0~2-0~2-0~2-0~1-0~1--0~1-0~ 1-0.1-0.1 

2-0.5 
1.9-0.4-0.3 
143-0.3-0.2-0.2 
1+-0.2-0.2-0.2-0. 1 
1.7-0.2-0.2-0.2-0.1-0.1 
1.7-0.2-0.2-0.1-0.1-0.1- 0.1 
1.5-0.3-0.2-0’ 1-0.1-0.1-0.1-0.1 
1~4-0.2-0.2-0*2-0* 1-0- 1-0.1-0.1-0.1 
1.3-0.2-0.2-0.2-0.1-0.1-0.1-0.1-0.1-0.1 

Note. For any value of x, a distortion sequence is an initial simple shear equal to the first of the 
shear st.eps for that position, followed by the irrotational strain for x = 35, followed by the next 
shear step and repeating until the shear steps give out. 

Table 1.  Distortion sequences 

In  figures 2 and 3, the ratios of the Reynolds stresses to the total intensity near the 
positions of maximum shear stress are compared with values calculated from the rapid 
distortion approximation. Two kinds of distortion history were used. One supposes 
that the turbulence before entering the distorting section has been sheared by a fixed 
amount, and that passage through the duct imposes further plane shear in addition 
to the irrotational distortion of the ambient flow. The other makes an allowance for 
entrainment or finite eddy lifetime by keeping constant total shear at  all stages. The 
calculation is necessarily done in steps, alternately a plane shear followed by an 
irrotational distortion, and two typical step sequences are listed in table 1. 

The calculations showed that the ratios, particularly the shear stress ratios, were 
not sensitive to changes in the history of shearing, to the number of the steps or to 
the eddy transfer coefficient, and the values in figure 2 are averages for several step 
sequences and values of the transfer coefficient. At entry to the distorting section, the 
rate of shearing was about 150 s-1, decreasing to about 20 s-l at  exit, compared with 
transverse rates of strain of approximately 25 s-l within the distortion. Passage 
through the distortion took nearly 0.06 s. 

The calculated values of the shear stress ratio are mostly higher than the measured 
values, a discrepancy that can be attributed to smaller quasi-isotropic eddies, and the 
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variations of the ratio are well described. Of particular interest is the initial rise in 
the ratio as the flow accelerates before entering the distorting section. The rise, 
predicted by the rapid distortion model and confirmed by these measurements, shows 
that longitudinal extension of a sheared flow produces changes of turbulence structure 
which may exert a strong effect on a flow. 

Ratios of the normal Reynolds stresses to the total intensity are less well described, 
but again their general variations are reproduced (figure 3). 

4. Flow in a curved mixing layer 
Recent measurements of turbulence in a curved mixing layer (Castro & Bradshaw 

1976) have shown that the shear stress ratio decreases to nearly half its 'normal' value 
after a change of direction by 45" but recovers to nearly its original value just before 
becoming a plane layer moving a t  90" to its original direction. The sense of the curva- 
ture is to make the mean flow stable to fluid displacements with conservation of 
angular momentum, analogous to the effect of a stabilizing density gradient in 
horizontally stratified flow, and the initial decrease in the ratio is expected. The 
surprising feature is the recovery towards the value for a plane layer before flow 
curvature becomes negligible, but Elliott (1976) has shown that the rapid distortion 
model can give a qualitative description of the recovery. More recently, Savill (1979) 
has been able to obtain very good agreement between observed and calculated values 
of the ratio by allowing for the effects of entrainment during the flow development 
(figure 4). 

The curious behaviour of the stress ratio may be explained as a consequence of the 
inertial waves that can propagate in rotationally stable flows. For simplicity, consider 
the effect of solid-body rotation on turbulence with an initial Reynolds shear stress. 
The rapid-distortion result (see appendix) is that, in a fluid rotating with angular 
velocity Cl about the Ox, axis, a, and u3, the Ox, and Ox, components of the Fourier 
coefficient of wavenumber (kl, k,, k3) ,  are given by 

where h = 2 f i k , / k .  Both a, and u3 vary sinusoidally with time at radian frequency A ,  
and their contribution to the velocity product u, u3 oscillates with frequency 2h about 
a mean value of 

If the wavenumber is parallel to the axis of rotation, the product contribution 
oscillates a t  frequency 4fi about a mean value of zero, but for other directions the 
frequencies are less and the mean values are not necessarily zero. If an initial Reynolds 
stress implies a degzee of phase coherence between the contributions of different 
components, the coherence will disappear with time and the stress will eventually 
approach a limiting value. However, since the possible frequencies have a sharp upper 
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FIGURE 4. Comparison of measured and calculated ratios of Reynolds shear stress to total intensity 
for the curved mixing-layer. --> observed by Castro & Bradshaw (1976); --- , calculated 
by Savill (1979). 

limit a t  4Q, the approach to the limit is likely to take the form of a damped oscillation 
with that frequency. In  terms of flow direction, the oscillation of Reynolds stress goes 
through a complete cycle while the flow turns through 90") and recovery occurs after 
turning through 45". 

I n  the curved mixing layer of Castro & Bradshaw, the rate of rotation of flow 
direction is considerably less than the rate of shearing and only some of the Fourier 
components can have amplitudes varying periodically in time, the remainder being 
aperiodic. The periodic components will cause an oscillation of Reynolds stress, and 
numericd calculations indicate that the frequency is near 2Q for the particular ratio 
of rotation to shear. It seems likely that the recovery angle would increase as the ratio 
of shear to  rotation rates increases. 

5. Turbulent flow over water waves 
From the initial work of Miles (1957)) most attempts to calculate the rate of energy 

transfer from the mean flow of a deep turbulent boundary layer to water waves have 
led to values much smaller than those measured either in the laboratory or a t  sea. 
No noticeable improvement is obtained by including the effects of Reynolds stresses, 
whether their relation to the mean flow is described by a coefficient of eddy viscosity 
or by the equation for the turbulent energy assuming constant ratios of Reynolds 
stresses to turbulent energy. Recently, better agreement has been obtained by 
postulating a visco-elastic response of the stresses to the wave-induced distortion, or 
by assuming large variations of roughness over the wave surface (Gent & Taylor 1976). 
However, a considerable increase in the energy transfer is predicted if the stress ratios 
change in the way described by the rapid-distortion equations of motion without 
having to introduce parameters of critical but uncertain magnitude. 

Except for the use of variable stress-ratios, the calculation of the pressure field 
over the waves follows closely that outlined in an earlier paper (Townsend 1972)) the 
other change being inclusion in the energy equation of a term describing work done 
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by the mean flow variations on normal Reynolds stresses of the basic flow. Briefly, 
the motion is described in a co-ordinate system moving with the surface wave, and 
the mean velocity has components (U, +u, 0, w) for a wavenumber in the Ox direction 
(Oz is the vertical direction). The wave-induced motion is treated as a small per- 
turbation of the constant-stress turbulent flow over a plans surface with roughness 
length z,, so that the unperturbed velocity distribution is 

where 7, is the (kinematic) constant shear stress, and c is the phase velocity of the 
wave. Then the equations of continuity and momentum are, to the approximation of 
small disturbance, 

(5.2) i 
au/ax + a w p z  = 0, 

u, a q a x  + wau,/az = - ap/ax + + a7 , /~ ,  

u, awlax = - ap/az + a7/ax, 

where P is the difference of the mean pressure and the normal Reynolds stress 7,,, 

7 is the difference of the local shear stress 7,, from the undisturbed value 7,, 7, is the 
change of (711 - 7,,), the difference of the normal stresses from the unperturbed value. 

To the approximation of small changes in flow quantities, the equation for the 
turbulent kinetic energy, $?, is 

u, a/ax(@) + a/&(&+ @i$ = (711 - 733)au /ax + 7 a ~ , / a ~  + 7, au/az - d, (5.3) 

where 6’ is the difference of the local rate of energy dissipation from its unperturbed 
value. To use the energy equation, it is necessary to provide relations between the 
turbulent energy and the Reynolds stresses, here through the rapid-distortion model, 
and for the rates of energy dissipation and vertical transport of energy in the per- 
turbed flow. As in the earlier calculation, it is assumed that the dissipation length 
parameter is L, = Ka;% ( z  - 6eckz) ,  where a, is the ratio of shear stress to turbulent 
intensity, T,,/?, in the undisturbed flow, and is the local elevation of the water 
surface. By definition, L, = (?)#/e and, to the approximation used, 

The changes in the vertical flux of turbulent energy are conveniently described by a 
diffusion coefficient proportional to the local ‘eddy viscosity’, so that the change is 

a -  
( F + i p G ) ’  = -/3K7$2% (ip’). 

The value of the parameter ,4 is not critical. 
Far above the surface, the time scales of the undisturbed flow are long compared 

with the time scale of the wave perturbation following the mean flow, and the rapid- 
distortion approximations are valid. There, the variations of the stress-intensity 
ratios are given by 

u, a / a ~ ( ~ ~ , / p 2 )  = A ,  au/az + A ,  awlall: + A ,  au/ax, 

U, ~I~X(T,/?) = B, au/& + B, aw/ax + B, &/ax, 
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FIUURE 5. Incremental responses of stress-ratios to additional small strains after a finite plane 

shear: (a )  response of shear-stress ratio, a, = luwj/q2; ( 6 )  response of normal-stress ratio, 

(u' - w')/q'. , response to additional shear in Ox direction; + , response to additional shear in 
0% direction; 0, response to irrotational distortion with principal axes Ox and 0 2 .  

- -  
- - _  

where the coefficients A ,  B are the incremental rates of change for suddenly imposed 
additional distortions, A,,  B, for additional shearing in the Ox direction, A,, B, for 
additional shearing in the Oz direction, and A,, B, for additional irrotational distortion 
in the xOz plane with principal axes Ox and 0 2 .  Near the surface, time scales of the 
basic flow are small and the stress-intensity ratios remain near their equilibrium values, 
aI and a,, and are almost unaffected by the perturbation. 

The simplest way to interpolate between the two extreme regions is to write the 
equations for the stress ratios as 

U, a/a~(~,,/p) + A(T,,/? - a,) = A ,  a u p  + A ,  awpx + A ,  a u p x ,  

U, a/ax(T,/$) + A(~,/F- a,) = B, a u p z  + B, awlax + B, aqax, j 
'I (5.4) 
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where h is a relaxation rate proportional to the rate of shear in the unperturbed flow. 
If h % kU,, the ratios have their equilibrium values, while, if h < kU,, their changes 
are given by the rapid-distortion calculations. h can be considered as the reciprocal 
of the effective lifetime of eddies a t  the particular level and, for consistency, it should 
be set equal to ( l /ao)  dU,/dz where a, is the effective total shear of the undisturbed 
flow. 

Using the rapid-distortion equations, values of the incremental rates have been 
calculated for total shears up to six and several values of the eddy transfer coefficient 
(figure 5 ) .  Possibly the most interesting feature is the large response of the shear- 
stress to intensity ratio, TI,/?, to irrotational distortion with principal axes Ox and 
Oz, i.e. to flow acceleration. The effect is that acceleration causes an increase in the 
ratio, in agreement with measurements in a distorted wake (see $ 3 ) ,  and it is apparent 
that  the elastic response of boundary layer turbulence to additional strain is highly 
anisotropic. 

The set of linearized equations (5.2)-(5.4) have been solved numerically with the 
boundary conditions : 

(i) that pressure, stress and velocity changes are small high above the wave surface; 
(ii) that the flow velocity close to the surface is parallel to it and described by the 

logarithmic velocity distribution, 

where U, is the surface velocity, (ro+7) is the local shear stress a t  the surface, and 
5 = 5,expikx is the displacement of the surface from the horizontal plane, z = 0. On 
the grounds that rapid-distortion calculations for a total shear of six give values of 
a, and a, near the observed values, the coefficient h has been set to 

and the values of the A and B coefficients are those for a, = 6 and an eddy transfer 
coefficient of ,8 = 0-3. 

Figures 6 and 7 show the results of calculations for In kz, = - 8, - 10 and a range of 
values of c/7:, expressed in non-dimensional form using scales formed from 7, and 
k. They present the values of the complex amplitudes of the pressure and stress 
variabions, (P3 + icy) and (7% + i7$), such that 

and 

P = k5,7,(PB + if'$) exp (ikx)l 

r = kC070(79 + i7g) exp (ikz).] 
(5.7) 

The changes brought by the inclusion of changing stress-ratios are: 
(i) the amplitudes of surface pressure variations are considerably increased; 
(ii) the amplitudes of the surface stress variations are very much larger; 
(iii) the region of flow modification extends much further above the wave surface; 
(iv) the vertical distribution of shear-stress amplitude no longer bears a close 

resemblance to a diffusion wave. 
It is not easy to isolate the mechanism that causes these considerable changes when 

the stress ratios vary. With the chosen flow parameters, the relaxation rates for 
turbulent energy and for the stress ratios are similar in magnitude, and elastic response 
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FIGURE 6. Amplitudes of surface pressure and shear-stress variations for a. small-amplitude 
gravity wave in deep turbulent boundary layer: (a) components of pressure amplitude in 
quadrature with wave displacement; (b )  components of stress amplitude in phase with wave 
displacement. With variations of stress-ratios calculated for a total shear strain of six: -, 
KU(k- ' ) / r t  = 8; ---, K U ( k - l ) / ~ j  = 10. With constant stress-ratios: -- , KU(k-')/rt  = 8;  
-.-.- KU(k-')/78 = 10. 

will be dominant above the height, z = 0.5k-l. With constant stress-ratios, the elastic 
response is nearly confined to additional shear in the Ox direction and is described by 
shear modulus of 2a,r0. With the variable stress-ratios, the response is highly aniso- 
tropic and components of the modulus tensor may be as large as 127,. Possibly the 
increased pressure amplitudes and the greater depth of modified flow arise from the 
increased effective rigidity of the turbulent fluid. 

Transfer of energy from the boundary layer to the water waves takes place through 
working of the surface pressures and through working of the surface shear stresses. 
Of these, the energy flux from the normal pressures is of magnitude p(k5,)27,cPf, and 
it is communicated directly to the wave motion. The flux from the surface shear 
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FIGURES 7(a) and ( b ) .  For legend see facing page. 

stresses, p(kc0)270 c7%, is not transferred directly into wave energy but Longuet- 
Higgins (1969) has shown that a considerable part ends as wave energy. So the non- 
dimensional energy transfer for In kz, = - 8 and c/7$ = 10 is in the range 42-58 if the 
effects of additional distortion on the stress ratios are included in the calculation, 
compared with 14-15 if they are ignored. 

6. Discussion 
Over the last twenty years, practical procedures for the calculation of flow develop- 

ment have become more realistic in that they now include moderately detailed 
descriptions of the turbulent motion, particularly as expressed in the Reynolds stress 
tensor. Less attention has been paid to the spatial structure of the turbulent motion 
in spite of the numerous experimental studies of organized eddies, possibly because 
of the difficulty of devising a compact, numerical specification. Current methods 
based on the Reynolds transport equations have been moderately successful by 
concentrating on the generation, transport, redistribution and decay of the Reynolds 
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FIGURE 7. Variation with height of the complex amplitudes of pressure and shear-stress over 
waves for c/78 = 8 and KU(k- l ) / rS  = 10: (a )  pressure amplitudes with variations of stress ratios; 
(b)pressure amplitudes with constant stress ratios; (c )  shear-stress amplitudes with variations of 
stress ratios; (d) shear-stress amplitudes with constant stress ratios. 

stresses, but the neglect of structural changes caused by mean flow distortion could 
be a serious defect for some applications. The rapid-distortion model emphasizes 
structure at the expense of firm predictions of turbulent intensity and, within that 
limitation, it may have a wider range of validity than the transport equation models. 

The background to the rapid-distortion approach is the concept of an ‘eddy’ as a 
stable flow pattern, of limited spatial extent and discrete in the sense that one eddy 
does not overlap another to a significant extent. Then, nonlinear interactions between 
diff’erent eddies are weak and, within a single eddy, their effect is to stabilize it against 
disintegration into smaller eddies. Changes in eddy structure arise from interaction with 
mean flow gradients and are relatively unaffected by energy transfer to smaller eddies. 

The rapid-distortion equations can be used to give an acceptably close description 
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of the observed correlation functions in several nearly unidirectional shear flows, and, 
if this means that the calculated flow structures are similar to the real ones, the 
equations should be able to predict structure changes for small additional distortions 
of any kind. If the underlying assumptions are valid, the predictions should be useful 
for large distortions as well. Here, the comparison has been between measured and 
calculated values of the stress-intensity ratios, which are of the greatest practical 
interest. A more severe test would be to compare correlations, and measurements are 
now in progress. 

The good agreement between measured and calculated stress ratios in the distorted 
wake and the curved mixing layer shows that the rapid-distortion model can describe 
the changes in the shear-stress ratio in flows subjected to additional distortion that is 
not simple shearing. Thus, longitudinal extension of a previously sheared flow leads 
to a considerable increase in the shear-stress ratio as well as the expected changes in 
ratios of the normal stresses, and solid-body rotation causes a decrease in the ratio 
followed by recovery towards the original value. Both the effects seem to depend on 
the initial structure of the turbulence and are not easily associated with source terms 
in the transport equation for the Reynolds stress. 

Comparison between the rapid-distortion model and calculation schemes using 
transport equations is not a simple matter since they approach the problem from 
different angles. The rapid-distortion model sets out only to predict stress ratios and, 
if it  were to form part of a calculation scheme, another equation would be needed to 
determine intensities. One possibility is to use an equation for the turbulent kinetic 
energy as in the calculation of flow over water waves in 5 5 .  There are two reasons 
why it might be advantageous to incorporate the rapid-distortion model into a 
calculation scheme by adding the transport equation for the kinetic energy. One is 
that, in flows undergoing three-dimensional distortion, calculation might be sim- 
plified by having only one transport equation. The more important is that the rapid- 
distortion model offers a more complete description of the turbulence and can predict 
changes in stress ratios arising from unusual flow distortions. 

The work described was done in the Cavendish Laboratory, assisted by grants from 
the Science Research Council and the Central Electricity Generating Board. 

Appendix. Fourier coefficient and wavenumber transformations calculated 
from the rapid-distortion approximation for finite, simple distortions and 
rotations 

(a)  Ximple shearing in the xOz plane 

For a mean flow ( U ,  V ,  W )  = (oiz, 0, 0 ) ,  the Fourier coefficients of the velocity field 

a,(k) = Aiia;(k'), change as 

where dashes denote values before the distortion, and 
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where? P = -arctan 

-~lk,(k?+k$(k”- 2k:+a:k1k;) 
kr2k2 & =  

and k2 = k2,+ki+ki. 

The changes in wavenumber for a component are given by 

k1 = k;, k; = k i ,  k ,  = kj: - ak;, 

and, if the rate of shear is uniform in time, the wavenumber integral for the transfer 
term is 1; k2dt = (k’, - ak; Ic; + ga:2k;2). 

a: 
a 

Transformations for other forms of simple shearing are easily found by appropriate 
change of the suffices. 

(b)  Irrotational distortion with $xed principal axes 

If a, j3 and y are the extension ratios in the principal, axial directions, Ox, Oy, Oz 
(where aj3y = I), the changes in wavenumber of a Fourier component are 

k ,  = a-lk;, k2 = P-lk;, k3 = y-lk;, 

and the transformation matrix for the components is 

kr2  + cZ2 kL2 + c23 kA2 

- C  31 k’k’ 1 2 

- cS2 ki k;  

kr2 + cgl ki2 + cI3 ki2 

- c~~ k; k; 

- cI3 k; k; A .  = k-2 i - c21 k; k; - ~ 1 2  k; k; kr2 + c , ~  k;, + c12 kL2 

a3 

where k2 = k?+ kg+ki ,  and C,, = (1 -a/j3), C23 = (1 -P ly ) ,  etc. 

For a uniform rate of straining, &/a = constant, p/j3 = constant, y / y  = constant, 

(c )  Irrotational distortion with axisymmetric, constant circulation flow 

For this distortion, the mean flow is (locally) constant along circular streamlines with 
velocity along the streamlines, 

U = K / r ,  

where r is distance from the centre of curvature. 

and Oy parallel to the axis of symmetry, the change in wavenumber is described by 
With respect to axes with Ox in the local direction of mean flow, Oz radially inwards, 

k; = k;, k ,  = k;, k, = k; - 2Ok;, 

t The arctan function should be interpreted aa the direction in the range T to - T ,  of a two- 
dimensional vector whose components are the denominator and numerator of the argument. 
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where 0 is the total change in direction of the flow. The transformation matrix for the 
Fourier components is 

k2 

For a uniform rate of rotation 

( d )  Solid body rotation 

If the mean flow is a solid-body rotation, wavenumbers of components do not change 
in the rotating system of co-ordinates, and individual components vary sinusoidally 
in time with radian frequency, h = 2Qk2/k, where Q is the angular velocity of rotation 
about the Ox, axis (positive if anti-clockwise in the x1 Ox, plane). To satisfy the initial 
conditions, the transformation matrix is 

- kl k 3 / ( k k 2 )  0 (1 - k2,/k2) k/k2 

A ,  = cosht 0 1 0 +sinht k, /k  0 - k l / k  i: 1 I i - (1 - kg/k2) k /k2  0 k1 k3/(kkz) 

Since the wavenumber of a component is not changed, 

kzdt = k2e/B 

where 8 = Qt is the angle turned. 

( e )  Calculation for complex distortions 

To show that the rapid distortion equations lead to different transformations of the 
velocity field if the same, rotational distortion is accomplished by different distortion 
paths, it is sufficient to consider the effect of a solid-body rotation through a right- 
angle combined with a finite simple shear of magnitude a. The total distortion does 
not depend on the order, but the change in the Fourier coefficients of the velocity 
field does. For the rotation, the transformation matrix is 

- ki k3/3/(kkz) 0 (1 - k:/k2) k/k, 

Rij = k,/k 0 - k l / k  i - (1 - kg/k2) k/k2 0 k1 k3/(kk2) 

with no change in wavenumber. For the shear, the matrix is 

where ki = k2 - 2ak, k ,  + a2k:, and X ,  Y are complex expressions (see 5 1) .  
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For rotation followed by shear, the first element of the total transformation matrix, 
Sip Rpi, is 

where the wavenumber components have their original values. For shear followed by 
rotation, the matrix is Rip Spj and the first element is 

All  = - k l ( k 3 - a k l ) / ( k n k 2 ) -  ( k ; + k E ) X / ( k n k 2 ) ,  

= -k1(k3-ak1)/(kn 

not at all the same. 
To calculate the velocity transformation for a continuously complex distortion, 

the equations for Aij  could be integrated numerically, but adequate results can be 
obtained by using a sequence of moderately small distortions of the simple types. 
Both for economy of effort and for accuracy, the types should be chosen so that 
the step-wise total distortion should always be close to the continuous total dis- 
tortion and so that no step has the effect of cancelling part of the effect produced 
by the previous step, For example, solid-body rotation should be used rather than 
constant-circulation rotation for the curved mixing layer since the actual mean 
velocity field is inertially more stable than a solid-body rotation. On the other hand, 
for a wake developing in a strongly curved, irrotational flow, the use of solid-body 
rotation steps would be wasteful and inaccurate, particularly on the unstable half of 
the flow. 

If the mean flow is three-dimensional, more than three types of distortion may be 
necessary but the dominant distortion in many flows is commonly simple shearing in 
the flow direction combined with smaller amounts of irrotational distortion and a 
transverse simple shear. A possible step-sequence might be: longitudinal simple shear, 
transverse shear, irrotational change of direction, fixed-axes irrotational distortion. 
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